高中数学公式总结大全 必背公式有哪些
高中数学公式有三大基础函数的解析式,三角函数的诱导公式,三角恒等变换公式,求导公式,向量的运算,数量积公式,积分运算公式,立体几何体积公式,等差、等比数列的通项公式、前n项和公式等。
高考数学必背公式有哪些
乘法与因式分解
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/a X1*X2=c/a注:韦达定理
判别式
b2-4ac=0注:方程有两个相等的实根
b2-4ac>0注:方程有两个不等的实根
b2-4ac<0注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAco***+cosAsinB sin(A-B)=sinAco***-sinBcosA
cos(A+B)=cosAco***-sinAsinB cos(A-B)=cosAco***+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a备战 2021 高考
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAco***=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAco***=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+co***=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAco*** tanA-tanB=sin(A-B)/cosAco***
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前 n 项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+ … +(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+ …n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理
a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理b2=a2+c2-2acco*** 注:角 B 是边 a 和边 c 的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式l=a*r a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2*l*r
锥体体积公式V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积V=S'L 注:其中,S'是直截面面积, L 是侧棱长
柱体体积公式V=s*h 圆柱体 V=pi*r2h
高中文科数学必背公式总结
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα备战 2021 高考
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到 2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及 3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα备战 2021 高考
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上 k∈Z)
如何提高高中数学成绩
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
3、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
4、经常对知识结构进行梳理,形成板块结构,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
5、阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
6、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。